
JAVA CODING GUIDELINES
 Dr. Saeed Rajput

1 General Concepts

1.0 Comments

There are 3 types of comments in Java.

1.1.1 Comment

Type

1.1.2 Usage 1.1.2.1 Example

JavaDoc Use JavaDoc immediately before

declarations of classes,

interfaces, methods, and

attributes to document them.

/**

* Product – represent a

* product object.

*/

C style Use C-style comments to

document out code that is no

longer applicable.

/*

*The following code was

*commented out because *the

business rule is no *longer valid.

*/

Single line Use single line comments

internally within member

functions to document business

logic.

// Apply a discount to //

Teachers with accounts // greater

than 3 years.

2.0 Standards for Packages, Classes, Interfaces

2.1 Naming Packages

The prefix of a unique package name is always written in all-lowercase letters and

should be one of the top-level domain names (com, edu, net, org, etc.)

Subsequent components of the package name should comply with internal corporate

naming conventions.

Package names should be singular, not plural.

Package edu.fau.gradingsystem.db

2.2 Naming Classes and Interfaces

The standard Java convention for naming Classes and Interfaces should be in mixed

case with the first letter of each internal word capitalized. Try to keep the names

simple and descriptive. Use whole names and avoid acronyms (unless the

abbreviation is more frequently used than the whole name, such as HTML).

The preferred convention to name a class is to use a descriptive noun.

The preferred convention to name an interface is to use a descriptive adjective such

as Runnable or Cloneable, although descriptive nouns are also common. The

names should be preceded by an uppercase “I” letter e.g. ILearner.

Class Student

Interface IRunnable, ILearner

2.3 Class Visibility

Classes may be defined with one of two visibilities: Public or Package (default).

Public classes are visible to all other classes whereas package classes are visible

only to other classes in the same package. Public visibility is indicated with the

keyword public. Package visibility is the default and has no keyword.

2.4 Testing Classes

For each class you create, include a main() method that contains code to test that

class. You don’t need to remove the test code to use the class in a project. This

code also provides examples of how to use the class.

Each class should have at least one static test method that tests its functionality. It

can be invoked from the main() method or directly from an external regression test

class. The results can be output to the standard output or to a logging file. Comments

for the test method should clearly state the procedure for determining the passing

and failing of the test.

3.0 Standards for Methods

3.1 Naming Methods

Methods (member functions) should be verbs, in mixed case with the first letter

lowercase, with the first letter of each internal word capitalized.

Method getName()

setFullName(String fullName)

isPersistent()

setPersistent(boolean isPersistent)

3.2 Accessor Methods

3.2.1 Getters

Getters are methods that return the value of an attribute (property). You should

prefix the name “get” to the attribute, unless it’s a boolean attribute and then

prefix “is” to the name of the attribute instead of “get”.

3.2.2 Setters

Setters, also known as mutators, are methods that modify the values of an

attribute. You should prefix the word “set” to the name of the attribute.

3.3 Constructor Methods

Constructors are methods that perform any necessary initialization when an object is

first created. Constructors are always given the same name as their class.

Constructor Teacher()

Student()

3.4 Method Visibility

Good design dictates that you should reduce coupling between classes. A rule of

thumb is to be restrictive as possible when setting the visibility of methods. Start

out with private visibility and only move upwards in scope if required.

Visibility Description

Public A public method can be invoked by any other method in any other object

or class.

Protected A protected method can be invoked by any method in the class in which it

is defined or any subclasses of that class.

Private A private method can only be invoked by other methods in the class in

which it is defined.

 No visibility is indicated. This is called default or package visibility. The

method is effectively public to all other classes within the same package,

but private to classes external to the package.

3.5 Method Layout

Each method length should not exceed a single display screen. Ideally it should be

between 8-12 lines. In some cases, it may go more than that. However, if it exceeds

two screen lengths, it should be broken down into multiple methods.

One way to improve the readability of a method is to indent your code within the

scope of a code block. Any code within braces, the “{” and “}” characters, forms a

block. The basic idea is that the code within a block should be uniformly indented

one unit.

The default for this one unit will be the four spaces (not TABS).

3.6 Method Documentation

Methods should be describe their functionality in their documentation.

For multiple nested control structures, put a single line comment directly after the

closing curly brace "}" telling which control structure it terminated.

4.0 Standards for Attributes

An attribute is a piece of data contained in an object or in a class. Attributes may be

a base data type such as a string or a float, or may be an object such as a Teacher or

bank account.

4.1 Naming Attributes

Attributes should be named in mixed case with the first letter lowercase, with the

first letter of each internal word capitalized.

Attributes that are collections, such as arrays or vectors, should be given names that

are plural to indicate that they represent multiple values.

Attributes firstName

zipCode

sqlDatabase

orderItems � a collection

4.2 Naming Components (Widgets)

For names of components (interface widgets) you should use a full descriptor

postfixed by the widget type.

Components okButton

cancelButton

TeacherListBox

zipCode{{??}}

fileMenu

4.3 Naming Constants

In Java, constants, values that do not change, are typically implemented at static

final attributes of classes. The recognized convention is to use full descriptive

words in all uppercase with words separated by underscores.

Under no condition should any constant be used directly in the code.

Constants MININUM_BALANCE

MAX_VALUE

4.4 Attribute Visibility

Attributes should be declared private for reasons of encapsulation. Attributes

should never be accessed directly; instead accessor methods should be used.

4.5 Attribute Documentation

Attribute should describe their functionality in a single line comment in front of

their declaration stating their objective.

5.0 Standards for Parameters (Arguments) to Methods

5.1 Naming Parameters

Parameters should be named following the rules for attributes

6.0 Standards for File Organization

Each Java source file contains a single public class or interface. Additionally,

private classes and interfaces that are associated to a public class or interface can be

part of the same source file. The public class or interface should be the first

definition in the file.

Java source files should have the following order:

• Beginning comments

• Package and import statements

• Class and interface declarations

6.1 Beginning Comments

All source files should begin with a javadoc comment that lists the class name,

version information, date, and copyright notice.

/**

* Catalog.java 1.0 8 Jan 2008

*

* Copyright © 2008 MST, FCAS, NSU

* 3301 College Avenue, Fort Lauderdale-Davie, Florida 33314-7796
* All Rights Reserved.

*

* This software is the confidential and proprietary information

* of MST, FCAS, NSU. (“Confidential Information”). You shall not

* disclose such Confidential Information.

*/

6.2 Package and Import Statements

The package keyword should be the first non-comment line in your Java file.

Following that should be all import statements.

6.3 Class/Interface Declarations

The next sub-sections list the parts of class or interface declaration. These are listed

in the order they should appear in the Java file.

6.3.1 Class/Interface Documentation Comments

In JavaDoc format, describe the purpose of the class/interface. List the author and

version (as JavaDoc parameters). Document the development/maintenance

history of the class.

/**

* Course represents a collection of subject that is

* taught repeatedly in different semesters.

*

* @version 1.0 8 Jan 2008

* @author S Rajput

*

* 8 Aug 2008 Rajput Initial Development of Class.

* 15 Aug 2008 Cobo Rewrite Constructor

*

*/

6.3.2 Class/Interface Statement

public class Catalog extends DatabaseRecord implements ICourse{

6.3.3 Class/Interface Implementation Comment

This JavaDoc comment should contain any class-wide or interface-wide

information that wasn’t appropriate for the class/interface documentation

comment.

6.3.4 Class (static) Variables

First list the public class variables, then the protected, then the package level, and

finally private variables.

6.3.5 Instance Variables

First list the public instance variables, then the protected, then the package level,

and finally private variables. Public instance variables should be avoided

whenever possible. Instance variable names should be descriptive of the

functionality they provide and contain a single line comment in front of their

declaration stating their objective.

6.3.6 Constructors

6.3.7 Public Methods

Include a Javadoc comment just prior to method declaration. Include in it a

description of the method, what the method must be passed as parameters, what

the method returns, and any exceptions thrown.

/**

* getCourseName() returns the name of the specified course.

*

* @param courseName The name of the specified course.

*

* @return A String representing a Catalog name.

*

* @throws java.rmi.RemoteException

*

*/

6.3.8 Protected Methods

6.3.9 Private Methods

7.0 Code Example

/**

* Catalog.java 1.0 8 Jan 2008

*

* Copyright © 2008 MST, FCAS, NSU

* 3301 College Avenue, Fort Lauderdale-Davie, Florida 33314-7796
* All Rights Reserved.

*

* This software is the confidential and proprietary information

* of MST, FCAS, NSU. (“Confidential Information”). You shall not

* disclose such Confidential Information.

*/

package edu.fau.gradingsystem;

import edu.fau.gradingsystem.db.*;

import java.util.Date;

import java.sql.*;

import java.util.Vector;

import java.rmi.*;

import java.rmi.server.*;

/**

* Represents a Catalog of Items for sale by a Seller (Entity)

*

* @version 1.1 15 Jan 2008

* @author S Rajput

*

* 18 Jan 2008 Rajput Initial Development of Class.

* 15 Jan 2008 Cobo Rewrite Constructor/New business rule

*

*/

public class Course extends DatabaseRecord implements ICourse{

/**

* A class implementation comment can go here

*/

 public static final int ACTIVE = 1; // Class Variable Comment

 public static final int INACTIVE = 0;

 public static final int PENDING = 2;

 private int catalogNumber; // Instance Variable Comment

 private int sellerNumber;

 private int status;

 private Entity seller;

 private String name;

 private Date lastUpdate;

/**

* A constructor comment can go here

*/

 public Course(DBInfo dbinfo) throws RemoteException {

 super(dbinfo,"Courses");

 }

/**

* The main() methods MUST be here

**/

 public static main() throws SomeException {

 //At laest call Test Function.

 }

/**

* At Least one test() method MUST be here.

* Document what is success and failure conditions of this test

**/

 public static test() throws SomeException {

 // At least call all public Functions,in this or other

 // test functions

 }

 // Accessors

/**

* getCourseNumber() returns the number of the current course

* @return A integer representing the catalog number

* @throws java.rmi.RemoteException

*/

 public int getCourseNumber() throws RemoteException {

return courseNumber;

 }

/**

* getStudentNumber() returns the number of the current student

* @return A integer representing the seller number

* @throws java.rmi.RemoteException

*/

 public int getStudentNumber() throws RemoteException {

return sellerNumber;

 }

 //Mutators

/**

* setStudentNumber() changes the seller number

* @param studentNumber A integer representing the seller

* number

* @throws java.rmi.RemoteException

*/

 public void setStudentNumber(int studentNumber) throws

 RemoteException{

 this.studentNumber = studentNumber;

 setChanged();

 }

 ...

 ...

)

